

COMPUTATIONAL SCREENING OF TERNARY SÊMICONDUCTING OXIDES FOR DIRECT PHOTOELECTROCHEMICAL WATER SPLITTING

José Manuel Orts, Francisco José Pastor y Roberto Gómez
Universidad de Alicante

Krakow 14-19th May 2018

FotoH2

Innovative Photoelectrochemical Cells for Solar Hydrogen Production Acronym: FotoH2 Webpage:fotoh2.eu

Horizon 2020 Research & Innovation Programme - Grant number 760930

Consortium members:

University of Alicante (coordinator)

BroadBit Energy Technologies

Consiglio Nazionale delle Ricerche (CNR-ITAE)

HyGear

ATS Solutions (ATS)

Goal: module of 1 m² photoelectrolyser with solar-to-H₂ efficiency of 10 %

Tandem-cell

Figure 3: Historic evolution of solar PV cell efficiencies. The red circling highlights tandem device architectures, which are the highest performing (source: National Renewable Energies Lab, USA)

Tandem cell

Figure 4: The operating principle of the planned hybrid tandem photoelectrochemical system

- → Maximizes use of solar radiation
- → Initial materials choice:

 α -Fe₂O₃ : n-type, Eg = 2.2 eV CuO : p-type, Eg = 1.3 eV

→Search for alternatives: computational screening provides candidates for experimental benchmarking

Computational screening

- Objective of computational screening :
 - Search for earth-abundant ternary metal oxide materials that could be alternatives to those initially proposed as photoelectrodes
- Estimated number of possible ternary oxides: ~10⁵
- Preselection → Different families of ternary oxides
 - ABO₂ Delafossites
 - AB₂O₄ Spinels (normal and inverse)
 - ABO₃ Perovskites, ilmenites
 - ABO₄ Scheelites, wolframites

Computational screening

- Operational leitmotiv:
 - Discard as soon as possible those materials that are not expected to fulfill requirements
 - Using the less computationally expensive methodology that allows to make that decision
- **Selection criteria** → optoelectronic properties
 - PRIMARY:
 - Band gap → magnitude and type (direct/indirect)
 - SECONDARY:
 - Effective masses (e / hole), mobilities
 - Absorption coefficients

Screening methodology

- Level 0 → Bibliographic and database search
 - Bandgap, structures, synthetic procedures
 - If reported gap values agree → calculation not needed
- Level 1 → Standard DFT calculations (bulk, 3D) VASP
 - PBE functional (Generalized Gradient Approximation)
 - PAW (plane wave formalism for periodic boundary)
 - DOS/Bands for experimental/optimized geometries.
 - Significantly underestimates bandgap.
 - Provides a lower bound for the real bandgap value.
 - Allows for rejection of unfavorable cases.

DFT + U approach

- Level 2 → GGA + U (VASP)
- Pure DFT \rightarrow Kohn-Sham orbitals \rightarrow 1-electron approach.
- Strongly correlated d and f electrons not adequately described
- DFT+U adds an effective correction term (no additional comput. cost)
- Hubbard-like hamiltonian (depends on orbital occupations)
- Significantly improves bandgap values
- Dudarev's method (one-parameter)
- Different published U values for a given metal and oxidation state
- U values usually adjusted to reproduce property of interest (band gap, oxide formation termochemistry, ...)

U-value

- "A high-throughput infrastructure for density functional calculations". A. Jain, G. Hautier, C.J. Moore, S.P. Ong, C.C. Fischer, T. Mueller, K.A. Persson, G. Ceder. Comp. Mater. Sci. 50 (2011) 2295.
 - → fits U to match experimental formation enthalpies of binary oxides.
- "Local environment dependent GGA+U method for accurate thermochemistry of transition metal compounds". M. Aykol, C. Wolverton, PRB 90 (2014) 115105.
 - → also fits U from formation enthalpies, distinguishes metal oxidation state and type of compound (oxides, hydroxides, ...).

	U(ceder) /eV	U(wolv) /eV	
Mg	0*	0*	
Ca	0*	0*	
Ti	0	4.35	
V	3.1	4.86	
Cr	3.5	3.04	
Mn	3.9	4.54	
Fe	4	4	
Co	3.4	4.26	
Ni	6	6.07	
Cu	4	-	
Zn	_	-	

Hybrid functionals

- Level 3 → Hybrid DFT calculations VASP
 - HSE06 functional
 - Adds a fraction of Fock exchange.
 - Calculated band gap very close to experimental value.
 - Much more costly (10 to 50 times) than PBE.
 - Convergence more problematic
 - GPU memory limitations
 - Band structure → dielectric function, extinction coeff.,

Results

- LnCrO₃. Lanthanide Chromium Perovskites.
 - Level 0 discards : data exist / radioactive / expensive
 - Level 1: Pr, Nd, Sm, Eu, Gd, Tb, Er, Tm, Yb
 - PBE Bandgaps: 1.34-1.41 eV; 0.87 eV (Nd)
 - Bad description of electronic structure.
 - Needs explicit treatment of f-electrons (as valence)
 - Nonlinear magnetic systems.

Results

- MgB₂O₄. Magnesium transition metal normal spinels
 - Level 0 discards: if not stable (databases)
 - Level 1: Ti, V, Cr, Mn, Fe, Co
 - \rightarrow MgCr₂O₄: 1.7 eV experim.
 - → MgCo₂O₄: no published data

	gap /	eV (opt a)	gap	/eV (opt no U)	gap	/eV (opt U Ceder)	gap	/eV (opt U Wolv)	
MgTi ₂ O ₄		-		metal		metal	1.60		
MgV ₂ O ₄		metal		metal	etal 0.68		1.94		
MgCr ₂ O ₄		1.4		1.4	2.78		2.86		
MgMn ₂ O ₄		metal		metal		0.33		0.37	
MgFe ₂ O ₄ -n	0.13		-		-		-		
MgFe ₂ O ₄ -I	0.24	up: 0.80	0.30	up: 0.85	2.10	up: 2.20	2.10	up: 2.20	
		down: 0.60		down: 0.70		down: 2.80		down: 2.80	
MgCo ₂ O ₄		0.72		0.65	2.00		2.30		

DOS -> Eg

UV-vis TAUC PLOTS (direct band gap)

PEC - MgCo₂O₄

PEC − MgFe₂O₄ − 550 °C

Material	Band gap (direct) / eV	Туре	Onset / V vs RHE	Max lph (≈1 cm²)
MgCo ₂ O ₄	2.3	P-	1.25	5 μΑ
MgMn ₂ O ₄	2.7	P-	1.05	20 μΑ
MgFe ₂ O ₄	2.15	N-	0.75-0.95	70 μΑ

... Conclusions ...

Computational screening usin DFT can help in selecting potential ternary oxide candidates with a given range of Eg, to be used as photoelectrodes.

But remember:

- Perfectly ordered, infinite 3D system used for calculation.
- Surface states, structural defects, dopants, can significantly affect the electronic properties, and photoelectrochemical activities.
- P- or n- type to be tested experimentally.
- Hybrid functionals and many-body approaches give much better results than GGA+U, but at a much higher computational cost.

Acknowledgents

Funding:

Project FotoH2

Innovative Photoelectrochemical Cells for Solar Hydrogen Production

EC - Horizon 2020 Research & Innovation Programme - R&I Action - Grant 760930

Thank you very much for your attention !!

THANK YOU FOR YOUR ATTENTION

Dr. José Manuel Orts

University of Alicante

Email: JM.Orts@ua.es

Phone: (+34) 965 90 98 09

