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Tandem cellTandem cell



Tandem cellTandem cell

�Maximizes use of solar radiation

� Initial materials choice:� Initial materials choice:

α-Fe2O3 : n-type,  Eg = 2.2 eV 

CuO : p-type,   Eg = 1.3 eV

�Search for alternatives: computational

screening provides candidates for experimental 

benchmarking



Computational screeningComputational screening

• Objective of computational screening : 

• Search for earth-abundant ternary metal oxide 
materials that could be alternatives to those initially 
proposed as  photoelectrodes

∼• Estimated number of possible ternary oxides:  ∼105

• Preselection � Different families of ternary oxides 

• ABO2 - Delafossites

• AB2O4 - Spinels (normal and inverse)

• ABO3 – Perovskites ,  ilmenites

• ABO4 – Scheelites, wolframites



Computational screeningComputational screening

• Operational leitmotiv: 

• Discard as soon as possible those materials that are not 
expected to fulfill requirements

• Using the less computationally expensive methodology 
that allows to make that decision

• Selection criteria � optoelectronic properties

• PRIMARY:   

• Band gap  � magnitude and type (direct/indirect) 

• SECONDARY:

• Effective masses (e / hole), mobilities

• Absorption coefficients



Screening methodologyScreening methodology

• Level 0 � Bibliographic and database search

• Bandgap, structures, synthetic procedures

• If reported gap values agree � calculation not needed

• Level 1 � Standard DFT calculations (bulk, 3D)  - VASP• Level 1 � Standard DFT calculations (bulk, 3D)  - VASP

• PBE functional (Generalized Gradient Approximation)

• PAW (plane wave formalism for periodic boundary)

• DOS/Bands for experimental/optimized geometries.

• Significantly underestimates bandgap. 

• Provides a lower bound for the real bandgap value.

• Allows for rejection of unfavorable cases.



• Level 2 ���� GGA + U   (VASP)

• Pure DFT � Kohn-Sham orbitals � 1-electron approach. 

• Strongly correlated d and f electrons not adequately described

• DFT+U  adds an effective correction term (no additional comput. cost)

DFT + U DFT + U approachapproach

• DFT+U  adds an effective correction term (no additional comput. cost)

• Hubbard-like hamiltonian (depends on orbital occupations)

• Significantly improves bandgap values

• Dudarev’s method (one-parameter)

• Different published U values for a given metal and oxidation state

• U values usually adjusted to reproduce property of interest (band gap, 

oxide formation termochemistry, …)



• “A high-throughput infrastructure for density functional

calculations”. A. Jain, G. Hautier, C.J. Moore, S.P. Ong, C.C. 

Fischer, T. Mueller, K.A. Persson, G. Ceder.  Comp. Mater. 

Sci. 50 (2011) 2295. 

� fits U to match experimental formation enthalpies of 

binary oxides.

U U valuevalue

U(ceder) /eV U(wolv) /eV

Mg 0* 0*

Ca 0* 0*

Ti 0 4.35

V 3.1 4.86

Cr 3.5 3.04binary oxides.

• “Local enviroment dependent GGA+U method for

accurate thermochemistry of transition metal 

compounds”. M. Aykol, C. Wolverton, PRB 90 (2014) 

115105. 

� also fits U from formation enthalpies,  distinguishes

metal oxidation state and  type of compound (oxides, 

hydroxides, …).

Cr 3.5 3.04

Mn 3.9 4.54

Fe 4 4

Co 3.4 4.26

Ni 6 6.07

Cu 4 -

Zn - -



Hybrid Hybrid functionalsfunctionals

• Level 3 � Hybrid DFT calculations - VASP

• HSE06 functional 

• Adds a fraction of Fock exchange.

• Calculated band gap very close to experimental value.• Calculated band gap very close to experimental value.

• Much more costly (10 to 50 times) than PBE.

• Convergence more problematic

• GPU memory limitations

• Band structure � dielectric function, extinction coeff., 
…



ResultsResults

• LnCrO3. Lanthanide Chromium Perovskites. 

• Level 0 discards : data exist / radioactive / expensive 

• Level 1: Pr, Nd, Sm, Eu, Gd, Tb, Er, Tm, Yb

• PBE Bandgaps: 1.34-1.41 eV;  0.87 eV (Nd)• PBE Bandgaps: 1.34-1.41 eV;  0.87 eV (Nd)

• Bad description of electronic structure.

• Needs explicit treatment of f-electrons (as valence)

• Nonlinear magnetic systems.



ResultsResults

• MgB2O4.  Magnesium – transition metal normal spinels

• Level 0 discards: if not stable (databases)

• Level 1: Ti, V, Cr, Mn, Fe, Co

• � MgCr2O4:  1.7 eV experim.

• � MgCo2O4: no published data

MgTi2O4

MgV2O4

MgCr2O4

MgMn2O4

MgFe2O4-n

up: 0.80 up: 0.85 up: 2.20 up: 2.20

down: 0.60 down: 0.70 down: 2.80 down: 2.80

MgCo2O4

-

2.30

gap /eV (opt U Wolv)

1.60

1.94

2.86

0.37

2.10

2.000.65

2.10

gap /eV (opt U Ceder)

metal

0.68

2.78

0.33

-

0.30

gap /eV (opt no U)

metal

metal

1.4

metal

-

0.72

-

MgFe2O4-I 0.24

gap /eV (opt a)

metal

1.4

metal

0.13



DOS DOS �� EgEg

HSE06 (15%); Eg = 0.74 eV

PBE

U = 4.86 eV; Eg = 1.94 eV

U = 3.1 eV;  Eg = 0.68 eV



UVUV--vis TAUC PLOTS (direct band gap)vis TAUC PLOTS (direct band gap)
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PEC – MgCo2O4
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PEC – MgFe2O4 – 550 ºC
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Material Band gap 

(direct) /

eV

Type Onset / V vs 

RHE

Max Iph

(≈1 cm2)

MgCo2O4 2.3 P- 1.25 5 µA

MgMn2O4 2.7 P- 1.05 20 µA

MgFe2O4 2.15 N- 0.75-0.95 70 µA



ConclusionsConclusions

Computational screening usin DFT can help in selecting potential ternary

oxide candidates with a given range of Eg, to be used as photoelectrodes. 

But remember:

- Perfectly ordered, infinite 3D system used for calculation.

- Surface states, structural defects, dopants, …. can significantly affect the

electronic properties, and photoelectrochemical activities.

- P- or n- type to be tested experimentally.

- Hybrid functionals and many-body approaches give much better results

than GGA+U, but at a much higher computational cost.
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