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Ewald summation is an important technique used to deal with long-range Coulomb interaction. While it is widely
used in simulations of molecules and solid state materials, many important results are dispersed in literature and
their implementations are often buried deep in large software packages. Since reliable and systematic calculation
of Coulomb interaction is critical for the investigation of perovskites, here we start from the fundamentals of
Ewald summation and derive clear expressions for long-range charge-charge, dipole-dipole, and charge-dipole

interactions, which can be readily used for numerical computations. We also provide the interaction matrix for
efficient Monte Carlo simulations involving charges and dipoles, implementing them in a Python software
package. A new type of interaction matrix, which accounts for the electrostatic energy change when ions are
displaced, is also derived and implemented. These results are the foundations for the investigation of ferro-

electric perovskites.

1. Introduction

In the investigation of perovksites, long-range Coulomb interactions
are important since they are often the driving force of spontaneous
polarization and ferroelectricity [1,2]. Accurate and fast calculations of
the dipole-dipole interactions are crucial in such systems [2]. In addi-
tion to the dipole-dipole interactions, complex perovksites (e.g., per-
voskites with doping, alloying, defects, and oxygen vacancy) [3-7] can
introduce effective charges and their long-range interactions in per-
ovksites. Therefore, it also becomes inevitable to deal with charge-
charge and charge-dipole interactions.

The difficulty to calculate the electrostatic energy in a system with
charges and dipoles lies in the long-range nature of Coulomb interac-
tion. The electrostatic energy due to the charge-charge interaction is
given by
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which decreases slowly with the distance between charges (~ 1/r),
making the convergence in numerical computation hard to achieve. In
the above expression, r; is the position of the charge g; and ¢, is the
vacuum permittivity. In fact, the above series is conditionally con-
vergent, i.e., the result of the sum depends on the order of the terms
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[8,9]. The justification for using the Ewald method to treat this sum is
discussed in Refs. [10,8].

The periodic boundary condition is usually adopted to enable the
use of the Ewald method. For infinite and periodic systems, the above
expression can be changed by organizing charges into supercells
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where r; = r, — 1}, n = (ny, ny, ny) with n,, n,, n, being integers. The
summation over i, j is within one supercell containing N charges, and
R, denotes the shift vector to other supercells. By running over all R,
the summation covers all charges in the system by repeating the su-
percell. The notation ), Re signifies that the term where i = j is omitted
when R,, = 0. The charge at r; + R, is often called an image charge of
the charge at r; in the first supercell. In later sections, expressions si-
milar to Eq. (2) will be used.

Straightforward computation of Eq. (1) or Eq. (2) is expensive due
to the slow convergence. One solution, which is also the first one of its
type, is known as the Ewald method introduced in 1921 by Paul P. Ewald
[11]. The crucial insight in this approach is to split the sum into two
parts, which are treated differently (sum in real and reciprocal spaces)
to achieve fast convergence. More specifically, it is necessary to choose
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a function f (r) with r = Irl so that
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where f (r)/r shall decay faster with r than 1/r (to sum efficiently in real
space), while [1 — f(r)]/r decays slow in the real space (sum efficiently
in the reciprocal space). As we will see below, one choice for f (r) is the
complementary error function.

The Ewald method is a special type of Poisson solver [12] as it
provides the electrostatic potential for a given charge distribution. The
Ewald summation is also an application of the more general Poisson
summation [13]. The formula shown in Eq. (23) is an example of the
Poisson summation formula, which is also used in Ref. [14] for systems
having periodicity in less than three dimensions.

In an Ewald summation, the reciprocal space is the critical part. In
particular, the calculation of terms like U (k) in Eq. (27), which re-
presents the charge/dipole distribution in the reciprocal space, needs to
be efficiently calculated. In the past, people have tried to optimize the
calculation of them, giving rise to the Particle-Particle-Particle-Mesh
(P>M) and Particle-Mesh-Ewald (PME) methods for arbitrary distribu-
tion of charges. The main idea is to exploit the Fast Fourier Transfor-
mation (FFT) in the evaluation of terms such as Eq. (27). However,
given the arbitrary positions of g; (within a given supercell), an inter-
polation of the charges to a regular mesh is necessary, which results in
the PME method [16]. Another popular method, proposed before PME
and also strongly depending on the efficiency of FFT, is the P>M method
[17] which use both the direct sum of particle-particle interaction (for
particles close to each other) and the particle-mesh method (to treat
particles separated far away). Since provskites already provide us with
a regular mesh (thanks to the Bravais lattice), we do not need to use
PME or P®M, but will focus on the interaction matrix [e.g., Eq. (13)],
which is necessary for efficient Monte-Carlo (MC) and Molecular Dy-
namics (MD) simulations of perovskites [2,18-20].

The aim of this work is twofold: (i) Summarize essential results
involving Ewald summation dispersed in literature, providing detailed
and reliable expressions necessary for numerical implementation. We
will cover charge-charge, dipole-dipole, and charge-dipole interactions,
needed for understanding complex perovskites with alloying, doping,
and defects. Moreover, we also derive the electrostatic energy expres-
sion when ions have small displacements (which can induce polariza-
tion); (ii) Discuss and provide numerical implementations for each type
of interactions mentioned in (i). In particular, we provide Python [21]
programs that generate the interaction matrix in the netcdf format
[22] and consider other less investigated interactions, including the
charge-dipole interaction and interactions due to small charge dis-
placements.

In this work, we deal with bulk materials having periodicity in all
three dimensions. Ewald summation for finite extent in two or three
dimensions is discussed in Refs. [14,23,15]. Such results are necessary
for the investigation of nanowires and thin films. It is also worth noting
that the Fourier transformation of the dipole interaction matrix can also
be accelerated using the Ewald method as discussed in Ref. [24].

This paper is organized as the follows. In Section 2, we treat charge-
charge interactions, providing details to explain the Ewald method and
preparing for other type of interactions. In Section 3, we obtain the
dipole-dipole and dipole-charge interaction matrices. In addition, we
also consider how Coulomb energy changes when ions are displaced. In
Section 4, we provide information regarding the implementation using
Python. In Section 5, we extend the Ewald summation to general Bra-
vais lattices, discuss several less important issues, and provide more
details of derivations used in previous sections. Finally in Section 6, we
give a brief summary.

2. Charge-charge interaction

We first discuss the charge-charge interaction energy with some
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details as the results obtained here can serve as starting points for di-
pole-dipole and charge-dipole interactions. For simplicity, hereafter
simple cubic lattice is used with the length of the supercell to be L.
General Bravais lattice will be discussed in Section 5.1, which shows a
natural transition from the simple cubic lattice is possible. Throughout
this paper, we use Latin letters (e.g., i, j) to index charges or dipoles and
Greek letters (e.g., a, 8) to indicate Cartesian directions (x, y, z). We
also use V to denote the volume of the whole crystal and Q to indicate
the volume of the chosen supercell.

2.1. Separated potentials

A key step in the Ewald method is to split the Coulomb interaction
into long-range and short-range terms. We first focus on the charge
distribution of a point charge g; at r = 0 with the charge distribution

pi(r) = 8(r),

which generates a Coulomb potential that slowly decays with 1/r. Here
d(r) is a Dirac-delta function. The charge distribution can be split into
two terms in the following way

pi (r) = P,-S (r) + PiL (r)’
where

p (r)=q,8(r) — ¢,G; (r),
PiL (")=qi G, (r),

L
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with o being a constant specifying the spread of the Gaussian function.
The physical meaning here is to intentionally introduce a smooth
charge distribution that neutralize the point charge at r = 0, resulting
in p°(r), which only produces short-range electric potentials (which
can be dealt with in real space), and an additional charge distribution
pl.L (r) (which can be dealt with in the reciprocal space).

The potential field generated by G, (r) can be obtained by solving
the Poisson equation,

and

Gy (r) =

Gy (r)
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where the spherical symmetry of G, (r) is used to have
1 62 _ Gy,(n)
Lo () ===
Integration over r gives
g © Go(r) ., _ 0
2 =— dr' = ——G, (1),
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which results in
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where erf(x) = ﬁj(; e~ dn.
Therefore, the electrostatic potentials generated by piL (r) and pl.s (r)

are
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where erf(x) is the error function and erfc(x) = 1 — erf(x) is the com-
plementary error function. The three functions erf(x)/x, erfc(x)/x and
1/x are plotted in Fig. 1, which indicates that erfc(x)/x decays faster
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Fig. 1. Comparison of the erf(x)/x, erfc(x)/x, and 1/x functions.
than 1/x and erf(x)/x decays similar to 1/x for large x.

2.2. ES and E*

Given the potentials ¢is (r) and ¢l.L (r), the energy can also be split
into two parts. Similar to the expression in Eq. (2), the short-range
potential due to all charges is given by

T T G (r — 1 — L)
Ir—rj—nLl
V2o )

Therefore the electrostatic energy ES of the system is given by

S (r)=-1-

4meq
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where the overall 1/2 is necessary to avoid double counting. We note
that the above expression is the same as Eq. (2) except the extra factor
of erfc(lr; — rj — nLIl/ J20). Because erfc(x)/x decays faster, ES can be
efficiently calculated in real space. In other words, Eq. (8) can be di-
rectly used in numerical implementation without further transforma-
tion. We also note that Eq. (8) represents the electrostatic energy due to
charge-charge interaction within a supercell.

The electrostatic energy due to the long-range potential is given by

nLl

X erfc( ®)

El= z”_l g, (ry)
o wg

2 471:0 Z Zl 1 ZJ 1iri—rj—nLl
Irj—rj—nLl
X erf(T).

To proceed further (see below), we can use the regular Zn

Z Ir,—rJ nL|

©)

(10)

where in the last step the relation lim,._¢(erf(x)/x) = 2/<7 has been
used.

Since erf(x)/x decays slowly (~ 1/x for large x, see Fig. 1), the ex-
pression in Eq. (10) needs to be converted to a sum in the reciprocal
space for fast numerical convergence. The core term in Eq. (10) has the
form
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)

= f(r). Therefore it can be expanded

Ir — nLl
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which is periodic as f(r + nL)
into a Fourier series,

fr)= Z agexp(ik-r),
I3

11

where k = 27 (my, mp, ms)/L with m, , 3 being integers. We perform the
inverse Fourier transformation to have (see Section 5.4 for detailed
derivation),

A [kt
TP T )

where Q = L3 is the volume of the supercell. Therefore, the interaction
energy can be represented in the reciprocal space as

22
4me %
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k#0
Z g’

In the above equation, we have ignored the k = 0 term and the reason is
explained in Section 5.4.

Finally the total energy due to the charge-charge interaction is given
by

cos[k(r — 1;)]

2 471'50(2

47150 2ro
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2.3. General result and o

The derivation shown in Section 2.2 results in a more general ex-
pression

1
Z" Ir1—(r2+nL)!
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which can be used in the following sections for the dipole-dipole and
dipole-charge interactions. This result is consistent with Ziman’s result
[25] and will be extended to general Bravais lattice in Section 5.1,
where another approach to reach this result is shown.

In principle, the value of o in Eq. (14) can be chosen arbitrarily. In
practice, it shall be chosen to reduce the summation in either the real
space or the reciprocal space. It was pointed out that the value of
a = 1/+/20 can be chosen as a ~ +/—Ind so that the error is on the order
of & (e.g., we can set § = 107!2) [26,27]. We have adopted this choice in
our numerical implementations and will show that the real-space
summation can be ignored in Section 5.2 [28].
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3. Other interaction matrices

The Ewald summation of charge-charge interaction provides us with
a basis to derive similar expressions for other types of interactions, such
as dipole-dipole and charge-dipole interactions. In obtaining these ex-
pressions, point dipoles are assumed. Point dipoles had been employed
to numerically simulate perovskites since the introduction of the ef-
fective Hamiltonian approach [2], generating many important results
and insights. [29,30,19,20,31].

3.1. Dipole-dipole interaction

The dipole-dipole interaction energy in a supercell is given by

11
EBdip-dip=; 10 2 Z (W:)a

iesupercell «a

8a,p = 3(Fya (Fy)
XZZI:“ﬁ ‘JO‘ UB:I(u])

J#i

where the sum over i is inside the supercell while the sum over j ex-
pands to the whole space. Following Eq. (2), the above sum can be
further converted to

Edip—dip
2 47150 Z Z Z (ul )“ (u] )ﬁ
n ij af
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where both i and j belong to the supercell now.

To proceed further, we need to focus on the sum over n. For sim-
plicity we use r = r; — r; to handle the above expression. A little algebra
shows that

Sa,8
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Using the result from Eq. (14) and applying 0,9y, to it, we have

_ 3(r—nL)y(r—nL)
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where X = "&';L', B(x) = —xexp( —x2) + erfc(x), and

2
Cx)= %(1 + 2’CT)xexp(—xZ) + erfc(x). For the use in MC simulation,
this equation can be rewritten as

Egip—dip = ZU o Quo (e ()5
where
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same as previous results [2]. In the above expression, the sum in the
real space is ignored and the reason is explained in Section 5.2.
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3.2. Charge-dipole interaction

Charge-dipole interaction had been discussed in Ref. [32], which
has different emphasis than ours. Similar to previous sections, we focus
on deriving the interaction matrix. Without the symmetry between
charge-charge (or dipole-dipole) interactions, two parts of energy need
to be considered, i.e., the energy of charge under the electric potential
of dipoles and vice versa. Moreover, to make sure that charges and
dipoles are not on exactly the same position, we assume dipoles are on
the lattice sites, i.e.,, r, while charges are shifted to
r, + 1/2a; + 1/2a, + 1/2a; where a;,; are the Bravais lattice. For
simple cubic lattice, it is r; + (1/2, 1/2, 1/2)a where a is the lattice
constant of the unit cell (note L is the lattice constant of the supercell).
For simplicity, we use d to denote this shift d = (1/2, 1/2, 1/2)a.

The electrostatic potential given by a dipole u is [33],

1 ur u; (1)
= =__"L yl=
4mey 13 47e, r

¢, (r) = (18)

Therefore, the energy for the charges under dipole potential is given by

qzul 1
47e ”Irj+d—nL| '

IREDIDY

Echg-dip =
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On the other hand, the potential energy of a dipole in an electric field is
given by [33]

U=—uE
=u-Vo(r).

Therefore, given the electric field from charges, this energy is
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Hence the total electrostatic energy between charge and dipole is given
by

1
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3.3. Ion displacements

Since dipoles arise when charges are displaced from its original
positions, one may wonder if it is reasonable to replace dipole-dipole
interaction with pure charge-charge interaction in the investigation of
perovskites. In this way, the Coulomb energy can be calculated without
resorting to dipoles. However, one possible disadvantage will be the
recalculation of the Ewald matrix each time when charges are dis-
placed. An alternative way is to implement the P>M or the PME method
in MC programs where particle positions need not be fixed. However,
this is likely still too slow since every time one charge is changed, a new
computation over the whole system is needed, which necessitates new
and more efficient algorithms.

One possible simplification is to deal with small charge displace-
ments. Given the charge-charge interaction matrix, if the charge g; is
displaced by s; to r; — nL + s;, the new interaction matrix can be ob-
tained by expanding Q; to the second order of s, i.e.,

Q;({r + s:})
=Q;({r}) +

x 2

k#0

=Q({rh) = 3 Y (5 — 8)a(si — 5)5Gyeg
B

11 (o
2 4meq Q
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We note that the expression in Eq. (21) cannot be reduced to the dipole-
dipole interaction despite their apparent similarity.

cos|k-(r; — ;) kakg.

(22)

4. Implementation

For calculation involving Ewald summation, there are two common
scenarios: (i) Charges and dipoles change frequently and every calcu-
lation needs to take into account all the changes. For instance, in a MD
simulation all charges and dipoles can change at each time step; and (ii)
Only one or just a few charges and dipoles are changed. For instance, in
a MC simulation, during one MC sweep the dipoles or charges can be
changed individually one by one. For scenario (i), the expressions in
Section 5.3 can be useful. For scenario (ii), an interaction matrix can be
used to speedup the calculation.

In Sections 2 and 3, we have derived the interaction matrices for
charge-charge, dipole-dipole, charge-dipole, displaced charge interac-
tions, which are given in Egs. (13), (17), (20), and (21), respectively.
These matrices are numerically implemented using Python. For com-
putationally intensive parts, we have used C+ + to accelerate the
calculation [34]. The output of the matrices are stored in netcdf
format for cross-platform deployment and easy use for different type of
simulations (e.g., MC and MD). The source code can be found on Gi-
tLab [35].

To verify the numerical implementation, we performed a series of
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Table 1
Dipole interaction for selected high-symmetry dipole configurations.
Symmetry* Ref. [37]7 Ewald

r -2 —2.094
Xq 4.844 4.844
Xs —2.422 —2.422
M; —2.677 —2.677
Ms 1.338 1.338
Ros 0 —6.348x 10710
Lo 2.932 2.932

1 The symmetry notations here specify the dipole configurations, which can
be found in Ref. [2].

2 In unit of Z*[4menad, where Z* is the effective charge, a, is the lattice
constant, and ¢, is the permittivity.

tests [35]: (i) For charge-charge interaction matrix, we have used
2 x 2 x 2 supercell and calculated the Madelung constants of NaCl
(M = 1.7476) and CsCl (M = 1.7627), obtaining correct results [36]; (ii)
We have used 4 X 4 X 4 supercell to calculate the dipole-dipole inter-
action energy (analogy to the Madelung constant) of selected high-
symmetry dipole configurations and compared to available results [37]
(see Tab. 1); (iii) For charge-dipole interaction matrix, we have con-
structed a few charge and dipole configurations, calculated the charge-
dipole electrostatic energy using the interaction matrix, and compared
to the results obtained by direct summation in the real space [38].
These results can be obtained by running the Python programs found in
the “test” directory of our PyEwald program [35].

5. Discussion

Having shown the derivation of main results, we proceed to discuss
the applicability of the interaction matrix to general Bravais lattices, the
summation in real space, and provide alternative expressions for the
total energy and more details important for obtaining results in pre-
vious sections.

5.1. General Bravais lattice

In previous sections, simple cubic lattice is conveniently assumed
for the Ewald summation. Here let us check if our results can be easily
extended to more general Bravais lattice. In the following, we focus on
the charge-charge interaction and use it as an example.

The key step here is to check whether Eq. (14) is still valid for
general Bravais lattice. To this end, we show that the Poisson-Jacobi
relation is also true for general Bravais lattice. That is, we would like to
show that the equation

1/ 7\3? ) k2
e—\r-#let2 — _(_) e‘k"ex —-——,
2 Ve b P72

L k (23)

is still valid for a general Bravais lattice. With the previous equation and
the fact that

1 _ 2 pe _ 242
m—ﬁj(; dtexp(—Ir + L, *t?)

2
== j(;y dtexp(—Ir + L, *t?)

2 _ 242
+ ﬁfy dtexp(—=Ir + L, *t?) (24)
the Ewald summation formula can be derived [25,39]. As a matter of
fact, these two equations are the basis for an alternative derivation of
the Ewald summation adopted by some authors [25]. Therefore, if the
Eq. (23) is true for general Bravais lattice, then the expressions of Ewald
summation are also true for general Bravais lattice.

In the following, we outline the proof using
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fr, 0= z e—\r+Ln|2t2’

Ly

where L, = a1n; + a;1, + azn; and @y, @, and a; are the Bravais vectors
of a general lattice and n;,; are integers. It is easy to see that,
fr+an + axny + azng, t) = f(r, t) is true for arbitrary n , 3, which
shows that f(r, t) is a periodic function that can be expanded into a
Fourier series

f@r 0= cu()exp(iGyr),

m
with the requirement that G,-(a;n; + axn, + azny) = 1 for arbitrary
n 2,3. This condition essentially requires that

'm = bimy + bymy + bsmg,

by, b, and b; are the primitive vectors reciprocal to a;, a, and a; [25].
The coefficients of the Fourier series are

Cm (t)=é Z fdre"’*L"'Z’Zexp(—iGm-r)

Ly

=1 =) dre"z‘zexp(—iGm-r)

A5 ool 1600),

where Q is the volume spanned by a;, a, and as.
Therefore

2L,
= é(%)yz Z exp(iGm'r)eXP(_ﬁ IGmlz)’

which is the same as Eq. (23) with G,, (made of b, ;) being the re-
ciprocal lattice of a given general Bravais lattice. Combining the above
expression and Eq. (24), we finally have

1
Z‘m Ir+Lyl

_an exp(=1Gm? / 47?)
=3 G P cos(G,,'r)

2

which is the the Ewald summation for general Bravais lattices.

The above results indicate that the Ewald method, along with the
interaction matrices, can be used for more complex systems other than
perovskites. The key procedure to exploy this method is to properly
represent all the charges/dipoles in a given system, which can be
achieved using a mesh dense enough to hold all charges/dipoles on the
lattices. Fig. 2(a) shows the lattice usually chosen to calculate the
Madelung constant of NaCl, which is a 2 X 2 x 2 supercell. However,
this is not the only choice. Fig. 2(b) shows a finer mesh that gives rise to
a4 X 4 x 4 supercell (note the lattice constant shall be halved to obtain
the correct Madelung constant). The second choice will be useful if

o Ir+Lnlt?

(25)

erfc(l erfe(lr+Ln | y) Y)
Ir+ Lyl

>

(26)

@

_.,__

M

__,__

Fig. 2. Different lattices can be chosen to calculate the electrostatic energy of
NaCl using the Ewald method (a) a 2 X 2 x 2 supercell and (b) a 4 x4 x 4
supercell.
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extra charges/dipoles appear in NaCl (which is unlikely). Following this
example, more complex systems can be dealt with in a similar way.

5.2. Summation in real space

It can be shown that the real-space summation for all the interaction
matrices can be ignored with proper choice of o. Rather than providing
exact proofs, we demonstrate why they can be ignored, which is further
verified numerical simulation.

For the charge-charge interaction, we first check the second term of
Eq. (13). The largest possible value exists when r; = r;and n = (1, 0, 0)
or equivalent terms:

V2o

If we choose o~ +—Ind = 5.26 with § =10"12 and L =1 (for the
smallest 1 x 1 X 1 supercell), then A = 1.02 x 107!3. This value is
comparable to the round error in numerical calculation and decreases
with L. Using the same argument, it can be shown that the first term can
also be safely ignored. Such practice has been numerically verified.

For the dipole-dipole interaction, the real-space sum is more com-
plex as shown in Eq. (16). To estimate how large this term is, we cal-
culate its upper bound

A= lerfc(i) = lerfc(ocL).
L L

S=15 \/ D [—5a,33(x) +
o,

=JBG) - COOP +2C2()

3xaxg

e |

Since S(x) is a monotonically decreasing function, we can check
"l =1,n=(000) (x="> "L') which gives § = 9.62 x 1071° when
a=1/y20 = 5.26. Therefore it can also be ignored in numerical cal-
culations.

For the charge-dipole interaction, we can again estimate the real-
space summation terms in Eq. (20) by calculating the largest terms
(Idl = 0.5). The value of the two terms are given by

=1 4 )= -13
A_dzerfc( %) =422x107",

1 _PY_ -11
B_d\/>ep( )_2.37><10,

with a = 1/4/20 = 2\/-In(8) = 10.5. Here the value of a is doubled to
compensate the reduced distance (from 1 to 0.5).

5.3. Other useful expressions

In Sections 2, 3.1, and 3.2, we have obtained various interaction
matrices that are suitable for simulations when charges and dipoles are
changed one by one. There are situations when charges and dipoles are
changed by large clusters, where alternative expressions are necessary
to further increase the computational efficiency.

The long-range part of the charge-charge interaction in Eq. (12) can
be converted to,

EL

Z w2 o))

D

2 47r£0 Q

47r£0 2no

where

U(k) = Z gexp(ik-r;).

(27)
As we have shown in Section 5.2, ES can be ignored with proper choice
of 0. Therefore the above expression is also the total Coulomb energy
due to charge-charge interaction.
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The dipole energy can be converted to:

_11 2 1 2
Edip—dip—grm(, ;F) Z ;|
iesupercell

1 Z e —o%3/2 |U(k)|2

2Qep
k#0

where

Uk) =Y. (k-u)exp(ik-ry),
i
Similarly, the alternative expression for charge-dipole interaction is

EéD = —L Z eij{

2k2/

JU (k-r; + k-d)V (k-1y),

where

UK=Y, gexplitir, + k-d)],
V ()=, (k-w)exp(ikcry),

and J takes the imaginary part of a complex number.
5.4. Derivation of ay

Obtaining the Fourier coefficients of a periodic function as shown in
Eq. (3) is important. The coefficient is given by

ak=l S, drf (r)exp(—ik-r)
= E f dr— erf( I "u)exp(—lk -r).

Given the periodicity of the function inside the above integral and
noting k are the reciprocal lattice points, we have

drrerf] sinfdBexp (—ikrcosd
B ament( ) sineasexp(-ikreose), 08

where spherical coordinate is used and the azimuth axis is set to be
along k. The above expression can be further converted to

ag= ‘gklzf dxsmxerf(fkg)

:%”%% S dy i dxsinoocexp(—x2y?)
where the definition of erf(x) has been used and «a = 1/+/2ko.
Integrating over x first we have

_2r 1 a exp(— 1/4y2)
o f dy

—47 e _@
Zq2®XP 2 )

which is the result we have used in previous sections.
In the above expression, we note that k = 0 is a special case [33].
From Eq. (28), we have

ag

a0—4”f drr Sm(kr) ‘ erf(Ia)

8702
= fo dxxerf(x)

_87102
TXO

where X, = j(;°° dxxerf(x) is infinitely large. If this term is included,

then the energy of Eq. (12) will be added by one more term, i.e. %ZXO Q2

where Q = le g; is the total charge in a supercell. While this term is
infinite, if we fix o, Q, and assume that the net charge Q in the supercell
is a constant (ideally Q = 0 with charge neutrality), this term becomes a
constant that can be ignored in practical calculations concerning energy
changes.
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6. Summary

To simulate ferroelectric perovskites, the Coulomb potential energy
between charges, dipoles, and displaced ions needs to be calculated. For
the long-range Coulomb interaction, numerical computation requires
the use of the Ewald method. In this work, we have discussed this
method in detail, provided interaction matrices, and extended to two
less investigated situations: the interaction between charges and di-
poles, as well as between displaced ions. In addition, the Ewald method
for general Bravais lattice is also considered. We note that, due to the
regular distribution of charges or dipoles, the real-space part in the
Ewald sum can be ignored. Finally, open source Python programs im-
plementing these interaction matrices are available on GitLab. These
analytic results, as well as the computer programs, will find their use in
the simulation of ferrelectric materials.
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